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A new model of calendering the film of a viscoelastic polymer solution based on the principles of mechanics
of saturated porous media is suggested. The point of exit of the film from the gap is not prescribed as is
done in traditional approaches but is determined from the condition of adhesion strength of the contact of the
polymer with the rolls. An analytical solution of the stationary problem is obtained. Disturbances of this so-
lution caused by periodic changes in the thickness of an incoming flow or a pulling rate are investigated.

Introduction. The traditional mathematical models of calendering are based on hydrodynamics of non-Newto-
nian fluids in the gap between rolls and are intended for determination of the thrust forces acting onto the rolls and a
change in the film thickness and in the material structure [1–5]. The common drawback of such models is the inde-
terminacy of the point of exit of a polymer from the gap (the exit point). This difficulty is overcome, as a rule, by
two methods. In the first method, the thickness of an outgoing film is considered to be known from experiment [1, 3].
In the second, at the exit point an additional condition of the local extremum of pressure is adopted [1, 2, 4–6].
Below, it will be shown that this requirement does not provide, generally speaking, an actual value of the outlet thick-
ness of the film.

In the present work, we suggest a new model of considering a polymer solution that is based on the princi-
ples of mechanics of saturated porous media [7, 8]. The permolecular structures of the polymer play the role of a po-
rous matrix whose rheological behavior is described by the Oldroyd viscoelastic model [9]. The motion of a solvent
serving as a saturating fluid relative to the polymer is determined by the law of filtration in a deformable porous me-
dium [8]. The point of exit of the film from the gap is determined in solving the problem from the condition of the
adhesion strength of contact of the polymer with the surface of rolls.

An analytical solution of the stationary problem is constructed. Distributions of the solvent pressure and of the
stresses in the polymer are found. The condition of implementation of the cavitation-free regime is obtained when the
solvent pressure in the gap does not reduce lower than the pressure of its saturating vapor i.e., no nucleation occurs
in the film.

We have also set and solved problems on disturbances of the steady state caused by periodic changes in the
inlet thickness of the film or in the pulling rate. The dependences of the amplitudes of change in the stress in the
polymer, of the solvent pressure, and of the thrust force on the frequency are found.

1. Mathematical Formulation of the Problem. The Basic Equations. A scheme of film flow of the polymer
solution in a calender gap is given in Fig. 1.

It is assumed that the flow is two-dimensional and the radii R of the cylindrical rolls are equal; the rate of
material pulling v is prescribed. The x-axis is in the plane of symmetry of the gap and is extended in the direction of
film flow, and the y-axis runs through the axes of the rolls. The basic geometric condition is

h << a << R . (1)

This means that the region is narrow (h << R) and long (a >> h). Here, the deformations of the polymer matrix can
be considered to be small and transverse (y), while the filtration of the solvent (with allowance for impenenetrability
of the rolls) can be considered longitudinal (x). The narrow transient region, in which the motion of a free film is re-
organized into the flow in the gap, will be modeled by the line (point) of entry x = −a, where the film profile under-
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goes bending. By virtue of (1) all kinematic characteristics of the polymer are known and determined by the film ve-
locity and the form of the gap:

h (x) = h0 + 
x

2

R
 ,   − a < x < a . (2)

Thus, deformations of the polymer matrix in stationary motion are as follows:

εx = εz = 0 ,   εy = ε = 
h (x) − h (− a)

h (− a)
 = 

x
2
 − a

2

Rh0 + a
2 . (3)

The rate and acceleration of deformation are characterized by the quantities

e (x) = 
dε

dt
 B ε

.
 = v 

∂ε

∂x
 = 

2vx

Rh0 + a
2
 ,   e

.
 (x) = 

2v
2

Rh0 + a
2 . (4)

The process of filtration in a deformable porous medium is described by the continuity equation and the fil-
tration law. For the conditions considered, in conformity with [8] we have

e + 
dq
dx

 = 0 ,   q = − 
k (ε)
µ

 
dp
dx

 . (5)

For small deformations we assume that k(ε) E k(0) = k. From (5) we obtain the following equation:

d
2
p

dx
2 = 

µe (x)

k
 ,   − a < x < x∗  , (6)

describing the distribution p(x) in the gap; x∗  is the unknown coordinate of exit of the film.
As a rheological model of the porous matrix, we adopt the Oldroyd model [9]

σ + λσ
.
 = µ0 (e + τe

.
 ) , (7)

where the overdot indicates the material time derivative and σ is the effective stress [7] of fibers parallel to the y-axis.
The physical meaning of this quantity is reflected in the formula for the thrust force:

F = ∫ 
−a

x∗

(p − σ) dx . (8)

For stationary motion, Eq. (7) with account for (4) acquires the form

Fig. 1. Scheme of the motion of the polymer solution film in the calender gap.
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σ + λv 
dσ
dx

 = µ0 

e + τv 

de
dx



 . (9)

Relations (6) and (9) are the basic equations of the model in a stationary case.
Let us pass to formulation of the boundary conditions. For pressure p we have

p (− a) = p (x∗ ) = pa , (10)

where pa is atmospheric pressure.
The inlet values of σ are obtained from (9) in the following way. Within the framework of the adopted

scheme of flow, the functions e(x) and e
.
(x) can be extended to the left beyond the point x = −a and represented in

the form

e (x) = H (x + a) 2vx

Rh0 + a
2 ;   e

.
 = δ (x + a) 2av

2

Rh0 + a
2 ,

where H(x) and δ(x) are the Heaviside and Dirac functions.
Integrating (9) over −a − ∆ < x < −a + ∆ at ∆ → 0, we will have

σ (− a + 0) = σ0 = − 
Nvµ0τ

aλ
 , (11)

where N = 2a2/(a2 + Rh0).
Unlike the traditional models [16], in the suggested approach the position of the exit point x∗  is determined

in the course of solving the problem from the condition of adhesion strength to separation of the contact of the poly-
mer with the surface of rolls: σ(x∗ ) = σ∗  ≥ 0.

Next, for the sake of simplicity we confine ourselves to a special case:

σ (x∗ ) = 0 . (12)

Thus, the problem consists of the determination of σ(x), x∗ , and p(x) from (6), (9)–(12) by the prescribed geo-
metric (h0, a, R), rheological (τ, λ, µ0), filtration (k, µ), and operational (v, σ∗ ) parameters.

2. Solution of the Stationary Problem. With account for (4), Eq. (9) acquires the form

σ + λv 
dσ

dx
 = µ0Nv 

x + vτ

a
2  .

Hereinafter we will scale x on a, σ on µ0v/a, and λ and τ on a/v. In the new scales, we have the following
equation for σ:

σ + λ 
dσ
dx

 = N (x + τ)

and the boundary condition

σ (− 1) = − 
Nτ
λ

 ,

whence

σ
N

 = x + τ − λ + (λ − τ) 

1 + 

1
λ



 exp 




− 

1 + x
λ




 = f (x, τ, λ) . (13)
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Now condition (12) allows determination of the exit point x∗  as a root of the equation f(x, τ, λ) = 0. We can
make sure that in the case of a purely viscous polymer matrix, x∗  = 0, and in the case of an elastic matrix, x∗  = 1.
In the general case, 0 < x∗  < 1.

Having determined the point x∗  of exit of the polymer film from a working section of the gap, we will find
the pressure distribution of the solvent. We will reckon this pressure from the atmospheric one and normalize to vaµ/k.
As a result, Eq. (6) and boundary conditions (10) acquire the form

pxx = Nx ,   p (− 1) = p (x∗ ) = 0 ,

whence

p = 
N
6

 (x3
 − x (x∗

2
 − x∗  + 1) − x∗

2
 + x∗ ) . (14)

As mentioned above, one of the traditional methods of determination of the exit point is the additional condi-
tion of minimum pressure [1, 2, 4–6]. We will show that this conditions is, generally speaking, ill-defined. By virtue
of (14) we have

dp
dx


 x=x∗

 = G = 
N
6

 (2x∗
2
 + x∗  − 1) .

At 0 < x∗  < 1 ⁄ 2, the value of G < 0 and p(x) in a working section of the gap −1 < x < x∗  is positive. At 1 ⁄ 2 <
x∗  ≤ 1, G > 0 and in the neighborhood of the exit there is a zone of negative pressures. And only at x∗  = 1 ⁄ 2 is the
traditional condition

dp
dx


 x=x∗

 = 0

fulfilled. The typical distribution p(x) and the dependence of minimum pressure on x∗  are represented in Figs. 2 and 3.
It should be noted that the presence of negative (i.e., lower than atmospheric) pressures in the working section

of the gap can lead to boiling-up of the solvent and nucleation in the film. In this connection, it is reasonable to de-
termine the conditions of implementation of the cavitation-free regime of flow:

p (x) > p0 (T) ,   − 1 ≤ x ≤ x∗  , (15)

where p0(T) is the pressure of the saturated vapor of the solvent. Since the minimum pressure p(x) is determined by
the position of the point x∗  (Fig. 3), there the dependence x∗ (p0) exists and inequality (15) is equivalent to the limita-
tion 0 < x∗  < x∗ (p0). In the special case p0 = 0, we have 0 < x0 < 1 ⁄ 2.

Fig. 2. Pressure distribution in the gap.

Fig. 3. Minimum pressure versus the coordinate of the point of exit of the film
from the gap.
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With the aid of (8), (13), and (14) we can find the thrust force F. Here, it should be taken into account that
the characteristic scales of pressure [p] and stress [σ] are substantially different: [p] = vaµ/k, [σ] = µ0v/a. Therefore,

F
[p]

 = ∫ 
−1

x∗



p − 

[σ]
[p]

 σ

 dx .

To evaluate [p]/[σ] = a2µ/(kµ0), we assume that µ0 = 100µ, k = 10−12 m2, and a = 10−1m. Then [p]/[σ] = 108. This
means that the thrust force is determined primarily by pressure and can be calculated by the formula

F

[p]
 = ∫ 
−1

x∗

pdx = − 
x∗

4

24
 − 

x∗
3

12
 + 

x∗
12

 + 
1

24
 . (16)

A plot of the dependence (F/[p])(x∗ ) is presented in Fig. 4.
Note that the outlet thickness of the film h∗  = h(x∗ ) is, generally speaking, not retained in the free state. By

virtue of (4) and (7) its change is determined by the equation e + τv∂e

∂x
 = 0 and boundary condition e(x∗ ) = 

Nvx∗

a2
.

Whence

e = v 
dε

dx
 = 

Nx∗

a
2  exp 





x∗  − x

vτ




 .

Integrating this expression over the interval [x∗ , ∞), we find the quantity ε(∞) − ε(x∗ ) = Nx∗ τv/a2 that characterizes, in
conformity with (3), the change in the thickness of a film after escape from the gap.

In actual practice, the initial parameters of the problem can experience deviations of various kind from sta-
tionary values. Therefore, it is interesting to investigate disturbances of the steady-state solution due to such deviations.

3. Response of a Solution of the Problem to a Change in the Inlet Thickness of a Film. In this case, an
important additional feature appears — along with the film thickness the coordinate of the point of entry of the film
into the gap (the entry point) becomes variable. On the basis of Fourier analysis, it is sufficient to consider the case
of harmonic disturbances; therefore, the coordinate of the entry point x0 will be prescribed as x0 = −a(1 + α exp
(iωt)), where 0 < α << 1.

Deformations of the polymer matrix are determined, as previously, by the form of the gap and described by
the relation

ε (x, t) = 
h (x) − h (x0 (t′))

h (x0 (t′))
 .

Fig. 4. Dimensionless value of the thrust force as a function of the point of
exit of the film from the gap, [p] = vaµ/k.
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Here, it is necessary to take into consideration that the instants of time t and t′ are related by the law of motion of a
material element of the film: x = x0 + v(t − t′). Otherwise, the element considered at the point x is at the entry point
at the instant of time t′ = t − (x − x0)/v. Thus

ε (x, t) = 

h (x) − h 



− a − α a exp 




iw 




t + 

x0 − x

v













h 



− a − α a exp 




iw 




t + 

x0 − x

v













 . (17)

Bearing in mind that the disturbances are small, we assume that ε(x, t) = ε
_
(x) + αε′ (x, t) where ε

_
(x) is deter-

mined by formula (3) while ε′(x, t) are found by performing linearization of (17)

ε′ (x, t) = − 2a
2
 exp 




iw 




t − 

a + x

v








 

Rh0 + x
2

(Rh0 + a
2)2

 . (18)

The rate and acceleration of deformation are characterized, respectively, by the quantities

e′ (x, t) = 
dε′

dt
 = − 2a

2
 exp 




iw 




t − 

a + x

v








 

2vx

(Rh0 + a
2)2

 H (x − x0) ,

de′

dt
 = − 2a

2
 exp 




iw 




t − 

a + x

v








 

2v
2

(Rh0 + a
2)2

 (H (x − x0) + xδ (x − x0)) .
(19)

Here the functions H and σ serve, as previously, for including the entire neighborhood of the entry point into the do-
main of definition of kinematic characteristics which is used in deriving the boundary conditions for stresses.

Let us represent stress in the form σ = σ
__

 + ασ′ , where σ
__

(x) is given by expression (13) and ασ′(x, t) is the
disturbance. Then rheological equation (7) acquires the form

σ
__

 + ασ′ + λα  
∂σ′

∂t
 + λv 

∂σ
__

∂x
 + λvα 

∂σ′

∂x
 = µ0 (e + τe

.) . (20)

An equation for σ′(x, t) in the domain −x0 < x < x∗ , t > 0 follows from (19) and (20):

σ′ + λ 
∂σ′

∂t
 + λv 

∂σ′

∂x
 = − 4va

2µ0 exp 



iw 



t − 

a + x

v








 

x + vτ

(Rh0 + a
2)2

 . (21)

We will seek σ′ in the form

σ′ (x, t) = f (x) exp (iwt) , (22)

where f(x) is some complex function. Then from (21) we find the equation

(1 + λiw) f (x) + λv 
∂f

∂x
 = − 4a

2
vµ0 exp 




− iw 

a + x

v




 

x + vτ

(Rh0 + a
2)2

 . (23)

The boundary condition for stress is obtained by integrating (2) in the neighborhood of the entry point:
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σ (x0 (t)) = 
µ0τ
λ

 e (x0 (t)) . (24)

Note that (24) is interesting in its universal nature independently of whether the entry point is fixed or not.
For convenience we will transpose the boundary condition from the point x0 = −a(1 + α exp (iωt)) to the point x =
−a. Such an operation is equivalent to expansion of (24) into a Taylor series in terms of α in the neighborhood α =
0.

With account for (4), (13), and (19), we obtain

σ′ (− a) = 
µ0τ

λ
 






− 

2va exp (iwt)

Rh0 + a
2

 + 
4a

3
v exp (iwt)

(Rh0 + a
2)2







 + aN exp (iwt) 




1 + (λ − τ) 




1 + 

1

λ




 
1
λ

 exp 



− 

1 − a

λ








 .

Using representation (22), we find the sought boundary condition for f(x) in the form

f (− a) = 
µ0τ

λ
 







4a
3
v

(Rh0 + a
2)2

 − 
2va

Rh0 + a
2







 + aN 




1 + (λ − τ) 




1 + 

1

λ




 
1

λ
 exp 




− 

1 − a

λ








 .

Scaling f on vµ0/a, we will have the boundary-value problem for f(x) in the previous dimensionless variables:

∂f (x)
∂x

 + 




1 + 

iwaλ
v




 f (x)

λ
 = − 

N
2
 (x + τ)
λ

 exp 



− iw 

1 + x
v




 , (25)

f (− 1) = 
τ
λ

 (N2
 − N) + N 


1 + 

1
λ

 (λ − τ) 

1 + 

1
λ







 . (26)

Having solved it, with account for (22) we find

exp (− iwt) σ′ (x, t) = − N
2
 (x + τ − λ) exp 




iw 

1 + x
v




 +

+ 




τ
λ

 (N2
 − N) + N − (λ − τ) (1 + λ) N


 exp 




− 

x
λ

 



1 + iw 

aλ
v






 +

+ N
2
 (− 1 + τ − λ) exp 




− 

1 + x

λ



 exp 




− iw 

1 + x
v




 = C (x) + iD (x) . (27)

Separating the real part of (27), we obtain

σ′ (x, t) = A (x) cos (wt − ϕ) ,

where A = √C2 + D2  is the amplitude of disturbances of σ and ϕ(x) = arccos 


C

√C2 + D2   




 is the phase shift.

To calculate corrections for the solvent pressure, it is necessary to know the displacement of the exit point
x∗ . Let x∗ (t) = x

_
∗  + αy(t). By virtue of (12)

σ
__

 (x
_
∗  + αy) + ασ′ (x∗  + αy) = 0 .

Whence in the linear, with respect to α, approximation
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y (t) = − 
σ′ (x

_
∗ , t)

dσ
__

dx


 x=x

_
∗

 B − 
σ′

Z
 . (28)

Substituting the expansion p(x, t) = p
_
(x) + αp′(x, t) in (6) and (10) and accounting for (19), we will obtain

d
2
p′

dx
2

 = − 
4µa

2

k (Rh0 + a
2)2

 exp 



iw 




t − 

a + x

v








 .

Normalizing, as previously, the pressure to vaµ/k, we finally arrive at

pxx
′  = − N

2
x exp 




iw 




t − 

a + x
v








 . (29)

Now we rewrite conditions (10) as follows:

p (− 1 − α exp (iwt)) = p (x
_
∗  + αy (t)) = 0 . (30)

whence

p′ (− 1) = 
N
6

 (− x∗
2
 + x∗  + 2) exp (iwt) ,   p′ (x∗ ) = − 

N
6

 (2x∗
2
 + x∗  − 1) y (t) . (31)

From (29) and (31) we find a correction for the pressure:

exp (− iwt) p′ (x, t) = N
2
 




xv
2

w
2  − i 

2v
3

w
3




 exp 




− iw 

1 + x

v




 −

− N
2
 




v
2

w
2 + i 

2v
3

w
3




 − N 

x

6
 (− x∗

2
 + x∗  + 2) + Q 

x + 1

x∗  + 1
 , (32)

where

Q = − N
2
 







x∗ v
2

w
2  − i 

2v
3

w
3







 exp 




− iw 

1 + x∗

v




 + x∗ N

2
 




v
2

w
2
 − i 

2v
3

w
3




 −

Fig. 5. Dependence of the correction for the amplitude of the thrust force on
the frequency of disturbances of the thickness of the incoming film.
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− 
Nx∗

6
 (− x∗

2
 + x∗  + 2) − N (2x∗

2
 + x∗  − 1) 

C (x) + iD (x)

6Z
 ;

C, D, and Z are determined in (27) and (28).
Now with account for formula (16) we can find a correction for the thrust force. A plot of the dependence

of this correction on the frequency is given in Fig. 5. It is indicative of the absence of resonance frequencies.
Disturbance of the Steady-State Solution of the Problem Due to a Change in the Pulling Rate. Let us

assume that the thickness of the inlet film is constant. The change in the pulling rate according to relations (4) entails
changes in the deformation rate and its acceleration and, consequently, changes in the polymer stresses and in the co-
ordinate of the exit point. As a result, the pressure distribution of the solvent pressure and the thrust force change as
well. A solution of the problem within the framework of the linear theory of disturbances can be obtained with use of
the technique described in Sec. 3. Thus, disturbance of the pressure has the form

p′ (x, t) = 
N

6
 exp (iwt) 







x

3
 − x − 

(2x∗
2
 + x∗  − 1) (x + 1) y (t)

x∗  + 1
 + 
− xx∗

3
 + xx∗  − x∗

3
 + x∗

x∗  + 1







 , (33)

where x∗  is found from (12) and (13).
Figure 6 presents the corresponding dependence of the amplitude of disturbances of the thrust force on the

frequency.
5. Results and Discussion. The suggested model of calendering is intended for polymer solutions when a me-

dium as a whole can be represented as a system of two interacting continua with substantially different rheological
properties. At the same time, the condition of the adhesion strength of contact of the polymer with rolls σ(x∗ ) = σ∗
≥ 0 determining the position of the point of exit of the film from the gap in solving the problem is of general nature
and can be employed for any media. It should be noted that the stresses σ in the polymer and the solvent pressure p
make radically different contributions to the thrust force. In essence, this is a consequence of the approximation of the
long narrow gap. Here, the deformations ε and along with them the stresses σ in the polymer are small. At the same
time, the solvent pressure p provides redistribution of the material along the gap so that at actual values of the pa-
rameters v, a, µ, and k its characteristic value (vaµ/k) appears to be substantial.

Note that the influence of σ on p is manifested not only in determination of the exit coordinate but also in
the form of the boundary conditions for disturbance p′.

We hope that this model can be of help in solving other problems of processing of materials.

NOTATION

v, rolling rate of the material; R, radius of the cylindrical rolls; T, temperature; 2h, gap thickness; h0, mini-
mum value of h; 2a, gap length; ε, e, and e

.
, deformation, rate, and acceleration of deformations of the polymer ma-

Fig. 6. Dependence of the correction for the amplitude of the thrust force on
the frequency of disturbances of the rolling rate.
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trix; p and µ, pressure and viscosity of the solvent; q, filtration rate of the solvent relative to the polymer matrix; k,
penetrability of the permolecular polymer structures; F, thrust force; σ, effective stress; λ, τ, and µ0, rheological pa-
rameters; x∗ , coordinate of the point of exit of the film from the gap; H and δ, Heaviside and Dirac functions; σ∗ ,
limit of the adhesion strength of contact; t, time; ω, frequency of disturbances; α, small parameter; x0(t), coordinate of
the entry point; N, geometric parameter; σ′, ε′, F′, and y(t), corrections for the effective stress, the deformation, the
thrust force, and for the coordinate of the exit point; A, amplitude of the disturbances of σ; ϕ, phase shift.
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